

    
      
          
            
  
pyrcel: cloud parcel model

[image: DOI] [https://zenodo.org/badge/latestdoi/12927551][image: Build Status] [https://travis-ci.org/darothen/pyrcel][image: Documentation Status] [http://pyrcel.readthedocs.org/en/stable/?badge=stable]

This is an implementation of a simple, 0D adiabatic cloud parcel model tool (following Nenes et al, 2001 [http://onlinelibrary.wiley.com/doi/10.1034/j.1600-0889.2001.d01-12.x/abstract] and Pruppacher and Klett, 1997 [http://books.google.com/books?hl=en&lr=&id=1mXN_qZ5sNUC&oi=fnd&pg=PR15&ots=KhdkC6uhB3&sig=PSlNsCeLSB2FvR93Vzo0ptCAnYA#v=onepage&q&f=false]). It allows flexible descriptions of an initial aerosol population, and simulates the evolution of a proto-cloud droplet population as the parcel ascends adiabatically at either a constant or time/height-dependent updraft speed. Droplet growth within the parcel is tracked on a Lagrangian grid.

[image: _images/model_example.png]
You are invited to use the model (in accordance with the licensing [https://raw.githubusercontent.com/darothen/pyrcel/master/LICENSE]), but please get in
touch with the author via e-mail or on
twitter [https://twitter.com/darothen]. p-to-date versions can be obtained
through the model’s github repository [https://github.com/darothen/pyrcel]
or directly from the author. If you use the model for research, please cite
this journal article [http://journals.ametsoc.org/doi/abs/10.1175/JAS-D-15-0223.1]
which details the original model formulation:


Daniel Rothenberg and Chien Wang, 2016: Metamodeling of Droplet Activation for Global Climate Models. J. Atmos. Sci., 73, 1255–1272. doi: http://dx.doi.org/10.1175/JAS-D-15-0223.1




Documentation Outline



	Scientific Description
	Model Formulation

	Model Implementation and Procedure

	Aerosol Population Specification

	References





	Installation
	Dependencies

	Testing

	Bugs / Suggestions





	Example: Activation

	Example: Basic Run

	Parcel Model Details
	Implementation

	Derivative Equation





	Reference
	Main Parcel Model

	Driver Tools

	Thermodynamics/Kohler Theory

	Aerosols

	Distributions

	Activation

	Constants









Current version: 1.3.1

Documentation last compiled: Sep 01, 2017







          

      

      

    

  

    
      
          
            
  
Scientific Description

The simplest tools available for describing the growth and evolution of
a cloud droplet spectrum from a given population of aerosols are based
on zero-dimensional, adiabatic cloud parcel models. By employing a
detailed description of the condensation of ambient water vapor onto the
growing droplets, these models can accurately describe the activation of
a subset of the aerosol population by predicting how the presence of the
aerosols in the updraft modify the maximum supersaturation achieved as
the parcel rises. Furthermore, these models serve as the theoretical
basis or reference for parameterizations of droplet activation which are
included in modern general circulation models ([Ghan2011]) .

The complexity of these models varies with the range of physical processes
one wishes to study. At the most complex end of the spectrum, one might wish
to accurately resolve chemical transfer between the gas and aqueous phase in
addition to physical transformations such as collision/coalescence. One could
also add ice-phase processes to such a model.


Model Formulation

The adiabatic cloud parcel model implemented here is based on
models described in the literature ([Nenes2001], [SP2006],) with some modifications and improvements. For a full description of the parcel model, please see ([Rothenberg2016])
The conservation of heat in a parcel of air rising at constant
velocity \(V\) without entrainment can be written as


(1)\[\frac{dT}{dt} = -\frac{gV}{c_p} - \frac{L}{c_p}\frac{d w_v}{dt}\]

where \(T\) is the parcel air temperature. Assuming adiabaticity
and neglecting entrainment is suitable for studying cloud droplet
formation near the cloud base, where the majority of droplet activation
occurs. Because the mass of water must be conserved as it changes from
the vapor to liquid phase, the relationship


(2)\[\frac{d w_v}{dt} = - \frac{dw_c}{dt}\]

must hold, where \(w_v\) and \(w_c\) are the mass mixing ratios
of water vapor and liquid water (condensed in droplets) in the parcel.
The rate of change of water in the liquid phase in the parcel is
governed solely by condensation onto the existing droplet population.
For a population of \(N_i\) droplets of radius \(r_i\), where
\(i=1,\dots,n\), the total condensation rate is given by


(3)\[\frac{dw_c}{dt} = \frac{4\pi \rho_w}{\rho_a}\sum\limits_{i=1}^nN_ir_i^2\frac{dr_i}{dt}\]

Here, the particle growth rate, \(\frac{dr_i}{dt}\) is calculated as


(4)\[\frac{dr_i}{dt} = \frac{G}{r_i}(S-S_{eq})\]

where \(G\) is a growth coefficient which is a function of the
physical and chemical properties of the particle receiving condensate,
given by


(5)\[G = \left(\frac{\rho_w R T}{e_s D'_v M_w} + \frac{L\rho_w[(LM_w/RT) - 1]}{k'_a T}\right)^{-1}\]

Droplet growth via condensation is modulated by the difference between
the environmental supersaturation, \(S\), and the droplet
equilibrium supersaturation, \(S_{eq}\), predicted from Kohler
theory. To account for differences in aerosol chemical properties which
could affect the ability for particles to uptake water, the
\(\kappa\)-Köhler theory parameterization ([PK2007]) is employed in the
model. \(\kappa\)-Kohler theory utilizes a single parameter to
describe aerosol hygroscopicity, and is widely employed in modeling of
aerosol processes. The hygroscopicity parameter \(\kappa\) is
related to the water activity of an aqueous aerosol solution by


\[\frac{1}{a_w} = 1 + \kappa\frac{V_s}{V_w}\]

where \(V_s\) and \(V_w\) are the volumes of dy particulate
matter and water in the aerosol solution. With this parameter, the full
\(\kappa\)-Kohler theory may be expressed as


(6)\[S_{eq} = \frac{r_i^3 - r_{d,i}^3}{r_i^3 - r_{d,i}^3(1-\kappa_i)}\exp\left( \frac{2M_w\sigma_w}{RT\rho_w r_i} \right) - 1\]

where \(r_d\) and \(r\) are the dry aerosol particle size and
the total radius of the wetted aerosol. The surface tension of water,
\(\sigma_w\), is dependent on the temperature of the parcel such
that \(\sigma_w = 0.0761 - 1.55\times 10^{-4}(T-273.15)\)
J/m\(^2\) . Both the diffusivity and thermal conductivity of air
have been modified in the growth coefficient equation to account for
non-continuum effects as droplets grow, and are given by the expressions


\[D'_v = D_v\bigg/\left(1 + \frac{D_v}{a_c r}\sqrt{\frac{2\pi M_w}{RT}}\right)\]

and


\[k'_a = k_a\bigg/\left(1 + \frac{k_a}{a_T r \rho_a c_p}\sqrt{\frac{2\pi M_a}{RT}} \right)\]

In these expressions, the thermal accommodation coefficient,
\(a_T\), is assumed to be \(0.96\) and the condensation
coefficient, \(a_c\) is taken as unity (see Constants).
Under the adiabatic assumption, the evolution of the parcel’s
supersaturation is governed by the balance between condensational
heating as water vapor condenses onto droplets and cooling induced by
the parcel’s vertical motion,


(7)\[\frac{dS}{dt} = \alpha V - \gamma\frac{w_c}{dt}\]

where \(\alpha\) and \(\gamma\) are functions which are weakly
dependent on temperature and pressure :


\[\alpha = \frac{gM_wL}{c_pRT^2} - \frac{gM_a}{RT}\]


\[\gamma = \frac{PM_a}{e_sM_w} + \frac{M_wL^2}{c_pRT^2}\]

The parcel’s pressure is predicted using the hydrostatic relationship,
accounting for moisture by using virtual temperature (which can always
be diagnosed as the model tracks the specific humidity through the mass
mixing ratio of water vapor),


(8)\[\frac{dP}{dt} = \frac{-g P V}{R_d T_v}\]

The equations (8), (7), (3), (2),
and (1) provide a simple, closed system of ordinary
differential equations which can be numerically integrated forward in
time. Furthermore, this model formulation allows the simulation of an
arbitrary configuration of initial aerosols, in terms of size, number
concentration, and hygroscopicity. Adding additional aerosol size bins
is simply accomplished by tracking one additional size bin in the system
of ODE’s. The important application of this feature is that the model
can be configured to simulate both internal or external mixtures of
aerosols, or some combination thereof.




Model Implementation and Procedure

The parcel model described in the previous section was implemented using
a modern modular and object-oriented software engineering framework.
This framework allows the model to be simply configured with myriad
initial conditions and aerosol populations. It also enables model
components - such as the numerical solver or condensation
parameterization - to be swapped and replaced. Most importantly, the use
of object-oriented techniques allows the model to be incorporated into
frameworks which grossly accelerate the speed at which the model can be
evaluated. For instance, although models like the one developed here are
relatively cheap to execute, large ensembles of model runs have been
limited in scope to several hundred or a thousand runs. However, the
framework of this particular parcel model implementation was designed
such that it could be run as a black box as part of a massively-parallel
ensemble driver.

To run the model, a set of initial conditions needs to be specified,
which includes the updraft speed, the parcel’s initial temperature,
pressure, and supersaturation, and the aerosol population. Given these
parameters, the model calculates an initial equilibrium droplet spectrum
by computing the equilibrium wet radii of each aerosol. This is calculated
numerically from the Kohler equation for each aerosol/proto-droplet, or
numerically by employing the typical Kohler theory approximation


\[S \approx \frac{A}{r} - \kappa\frac{r_d^3}{r^3}\]

These wet radii are used as the initial droplet radii in the simulation.

Once the initial conditions have been configured, the model is
integrated forward in time with a numerical solver (see ParcelModel.run()
for more details). The available solvers wrapped here are:


	LSODA(R)


	LSODE


	(C)VODE




During the model integration, the size representing each aerosol bin is
allowed to grow via condensation, producing something akin to a moving
grid.  In the future, a fixed Eulerian
grid will likely be implemented in the model for comparison.




Aerosol Population Specification

The model may be supplied with any arbitrary population of aerosols,
providing the population can be approximated with a sectional
representation. Most commonly, aerosol size distributions are
represented with a continuous lognormal distribution,


(9)\[n_N(r) = \frac{dN}{d \ln r} = \frac{N_t}{\sqrt{2\pi}\ln \sigma_g}\exp\left(-\frac{ \ln^2(r/\mu_g)}{2\ln^2\sigma_g}\right)\]

which can be summarized with the set of three parameters,
\((N_t, \mu_g, \sigma_g)\) and correspond, respectively, to the
total aerosol number concentration, the geometric mean or number mode
radius, and the geometric standard deviation. Complicated multi-modal
aerosol distributions can often be represented as the sum of several
lognormal distributions. Since the parcel model describes the evolution
of a discrete aerosol size spectrum, can be broken into \(n\) bins,
and the continuous aerosol size distribution approximated by taking the
number concentration and size at the geometric mean value in each bin,
such that the discrete approximation to the aerosol size distribution
becomes


\[n_{N,i}(r_i) = \sum\limits_{i=1}^n\frac{N_i}{\sqrt{2\pi}\ln\sigma_g}\exp\left(-\frac{\ln^2(r_i/\mu_g)}{2\ln^2\sigma_g}\right)\]

If no bounds on the size range of \(r_i\) is specified, then the
model pre-computes \(n\) equally-spaced bins over the logarithm of
\(r\), and covers the size range \(\mu_g/10\sigma_g\) to
\(10\sigma_g\mu_g\). It is typical to run the model with \(200\)
size bins per aerosol mode. Neither this model nor similar ones exhibit
much sensitivity towards the density of the sectional discretization .

Typically, a single value for hygroscopicity, \(\kappa\) is
prescribed for each aerosol mode. However, the model tracks a
hygroscopicity parameter for each individual size bin, so size-dependent
aerosol composition can be incorporated into the aerosol population.
This representation of the aerosol population is similar to the external
mixing state assumption. An advantage to using this representation is
that complex mixing states can be represented by adding various size
bins, each with their own number concentration and hygroscopicity.




References


	Nenes2001

	Nenes, A., Ghan, S., Abdul-Razzak, H., Chuang, P. Y. & Seinfeld, J. H. Kinetic limitations on cloud droplet formation and impact on cloud albedo. Tellus 53, 133–149 (2001).



	SP2006

	Seinfeld, J. H. & Pandis, S. N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change. Atmos. Chem. Phys. 2nd, 1203 (Wiley, 2006).



	Rothenberg2016

	Daniel Rothenberg and Chien Wang, 2016: Metamodeling of Droplet Activation for Global Climate Models. J. Atmos. Sci., 73, 1255–1272. doi: http://dx.doi.org/10.1175/JAS-D-15-0223.1



	PK2007

	Petters, M. D. & Kreidenweis, S. M. A single parameter representation of hygroscopic growth and cloud condensation nucleus activity. Atmos. Chem. Phys. 7, 1961–1971 (2007).



	Ghan2011

	Ghan, S. J. et al. Droplet nucleation: Physically-based parameterizations and comparative evaluation. J. Adv. Model. Earth Syst. 3, M10001 (2011).











          

      

      

    

  

    
      
          
            
  
Installation

To grab and build the latest version of the model, you should use pip and
point it to the source code repository [http://github.com/darothen/pyrcel] on github:

$ pip install git+git://github.com/darothen/pyrcel.git





This should automatically build the necessary Cython modules and export the
code package to your normal package installation directory. If you wish to
simply build the code and run it in place, clone the repository [http://github.com/darothen/pyrcel], navigate
to it in a terminal, and invoke the build command by hand:

$ python setup.py build_ext --inplace





This should produce the compiled file parcel_aux.so in the model package.
You can also install the code from the cloned source directory by invoking
pip install from within it; this is useful if you’re updating or
modifying the model, since you can install an “editable” package which
points directly to the git-monitored code:

$ cd path/to/pyrcel/
$ pip install -e .






Dependencies

This code was originally written for Python 2.7, and then
futurized [http://python-future.org/] to Python 3.3+ with hooks for
backwards compatibility. By far, the simplest way to run this code is to grab a
scientific python distribution, such as
Anaconda [https://store.continuum.io/cshop/anaconda/]. This code should work
out-of-the box with almost all dependencies filled (exception being numerical
solvers) on a recent version (1.2+) of this distribution. To faciliate this,
conda [http://conda.pydata.org/docs/] environments for Python versions 2.7
and 3.4+ are provided in the pyrcel/ci directory.


Necessary dependencies


	numpy [http://www.numpy.org/]


	scipy [http://www.scipy.org/]


	pandas [http://pandas.pydata.org/]


	Cython [http://cython.org/]


	future [http://python-future.org/]


	Assimulo [http://www.jmodelica.org/assimulo_home/index.html]





Note

As of version 1.2.0, the model integration components are being re-written
and only the CVODE interface is exposed. As such, Assimulo is temporarily
a core and required dependency; in the future the other solvers will
be re-enabled. For best results, you will want to manually install
Assimulo [http://www.jmodelica.org/assimulo_home/installation.html], as
I’ve encountered issues using the available pip or conda packages.






Numerical solver dependencies


	LSODA - scipy [http://www.scipy.org/] or
odespy [https://github.com/hplgit/odespy/]


	VODE, LSODE - odespy [https://github.com/hplgit/odespy/]


	CVODE - Assimulo [http://www.jmodelica.org/assimulo_home/index.html]







Recommended additional packages


	matplotlib [http://matplotlib.sourceforge.net/]


	seaborn [http://stanford.edu/~mwaskom/software/seaborn/index.html]


	PyYAML [http://pyyaml.org/wiki/PyYAMLDocumentation]


	xarray [http://xarray.pydata.org/en/stable/]









Testing

A nose test-suite is under construction. To check that your model is configured
and running correctly, you copy and run the notebook corresponding to the
basic run example, or run the command-line interface
version of the model with the pre-packed simple run case:

$ cd path/to/pyrcel/
$ ./run_parcel examples/simple.yml








Bugs / Suggestions

The code has an
issue tracker on github [https://github.com/darothen/pyrcel/issues]
and I strongly encourage you to note any problems with the model there, such
as typos or weird behavior and results. Furthermore, I’m looking for ways to
expand and extend the model, so if there is something you might wish to see
added, please note it there or send me an e-mail.
The code was written in such a way that it should be trivial to add physics in a modular fashion.







          

      

      

    

  

    
      
          
            
  
Example: Activation

In this example, we will study the effect of updraft speed on the
activation of a lognormal ammonium sulfate accumulation mode aerosol.

# Suppress warnings
import warnings
warnings.simplefilter('ignore')

import pyrcel as pm
import numpy as np

%matplotlib inline
import matplotlib.pyplot as plt
import seaborn as sns





First, we indicate the parcel’s initial thermodynamic conditions.

P0 = 100000. # Pressure, Pa
T0 = 279.    # Temperature, K
S0 = -0.1   # Supersaturation, 1-RH





We next define the aerosol distribution to follow the reference
simulation from Ghan et al,
2011 [http://onlinelibrary.wiley.com/doi/10.1029/2011MS000074/abstract]

aer =  pm.AerosolSpecies('ammonium sulfate',
                          pm.Lognorm(mu=0.05, sigma=2.0, N=1000.),
                          kappa=0.7, bins=100)





Loop over updraft several velocities in the range 0.1 - 10.0 m/s. We
will peform a detailed parcel model calculation, as well as calculations
with two activation parameterizations. We will also use an accommodation
coefficient of \(\alpha_c = 0.1\), following the recommendations of
Raatikainen et al (2013) [http://www.pnas.org/content/110/10/3760].

First, the parcel model calculations:

from pyrcel import binned_activation

Vs = np.logspace(-1, np.log10(10,), 11.)[::-1] # 0.1 - 5.0 m/s
accom = 0.1

smaxes, act_fracs = [], []
for V in Vs:
    # Initialize the model
    model = pm.ParcelModel([aer,], V, T0, S0, P0, accom=accom, console=False)
    par_out, aer_out = model.run(t_end=2500., dt=1.0, solver='cvode',
                                 output='dataframes', terminate=True)
    print(V, par_out.S.max())

    # Extract the supersaturation/activation details from the model
    # output
    S_max = par_out['S'].max()
    time_at_Smax = par_out['S'].argmax()
    wet_sizes_at_Smax = aer_out['ammonium sulfate'].ix[time_at_Smax].iloc[0]
    wet_sizes_at_Smax = np.array(wet_sizes_at_Smax.tolist())

    frac_eq, _, _, _ = binned_activation(S_max, T0, wet_sizes_at_Smax, aer)

    # Save the output
    smaxes.append(S_max)
    act_fracs.append(frac_eq)





[CVode Warning] b'At the end of the first step, there are still some root functions identically 0. This warning will not be issued again.'
10.0 0.0156189147154
[CVode Warning] b'At the end of the first step, there are still some root functions identically 0. This warning will not be issued again.'
6.3095734448 0.0116683910368
[CVode Warning] b'At the end of the first step, there are still some root functions identically 0. This warning will not be issued again.'
3.98107170553 0.00878287310116
[CVode Warning] b'At the end of the first step, there are still some root functions identically 0. This warning will not be issued again.'
2.51188643151 0.00664901290831
[CVode Warning] b'At the end of the first step, there are still some root functions identically 0. This warning will not be issued again.'
1.58489319246 0.00505644091867
[CVode Warning] b'At the end of the first step, there are still some root functions identically 0. This warning will not be issued again.'
1.0 0.00385393398982
[CVode Warning] b'At the end of the first step, there are still some root functions identically 0. This warning will not be issued again.'
0.63095734448 0.00293957320198
[CVode Warning] b'At the end of the first step, there are still some root functions identically 0. This warning will not be issued again.'
0.398107170553 0.00224028774582
[CVode Warning] b'At the end of the first step, there are still some root functions identically 0. This warning will not be issued again.'
0.251188643151 0.00170480101361
[CVode Warning] b'At the end of the first step, there are still some root functions identically 0. This warning will not be issued again.'
0.158489319246 0.0012955732509
[CVode Warning] b'At the end of the first step, there are still some root functions identically 0. This warning will not be issued again.'
0.1 0.000984803827635





Now the activation parameterizations:

smaxes_arg, act_fracs_arg = [], []
smaxes_mbn, act_fracs_mbn = [], []

for V in Vs:
    smax_arg, _, afs_arg = pm.arg2000(V, T0, P0, [aer], accom=accom)
    smax_mbn, _, afs_mbn = pm.mbn2014(V, T0, P0, [aer], accom=accom)

    smaxes_arg.append(smax_arg)
    act_fracs_arg.append(afs_arg[0])
    smaxes_mbn.append(smax_mbn)
    act_fracs_mbn.append(afs_mbn[0])





Finally, we compile our results into a nice plot for visualization.

sns.set(context="notebook", style='ticks')
sns.set_palette("husl", 3)
fig, [ax_s, ax_a] = plt.subplots(1, 2, sharex=True, figsize=(10,4))

ax_s.plot(Vs, np.array(smaxes)*100., color='k', lw=2, label="Parcel Model")
ax_s.plot(Vs, np.array(smaxes_mbn)*100., linestyle='None',
          marker="o", ms=10, label="MBN2014" )
ax_s.plot(Vs, np.array(smaxes_arg)*100., linestyle='None',
          marker="o", ms=10, label="ARG2000" )
ax_s.semilogx()
ax_s.set_ylabel("Superaturation Max, %")
ax_s.set_ylim(0, 2.)

ax_a.plot(Vs, act_fracs, color='k', lw=2, label="Parcel Model")
ax_a.plot(Vs, act_fracs_mbn, linestyle='None',
          marker="o", ms=10, label="MBN2014" )
ax_a.plot(Vs, act_fracs_arg, linestyle='None',
          marker="o", ms=10, label="ARG2000" )
ax_a.semilogx()
ax_a.set_ylabel("Activated Fraction")
ax_a.set_ylim(0, 1.)

plt.tight_layout()
sns.despine()

for ax in [ax_s, ax_a]:
    ax.legend(loc='upper left')
    ax.xaxis.set_ticks([0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0])
    ax.xaxis.set_ticklabels([0.1, 0.2, 0.5, 1.0, 2.0, 5.0, 10.0])
    ax.set_xlabel("Updraft speed, m/s")





[image: ../_images/activate_13_0.png]




          

      

      

    

  

    
      
          
            
  
Example: Basic Run

In this example, we will setup a simple parcel model simulation
containing two aerosol modes. We will then run the model with a 1 m/s
updraft, and observe how the aerosol population bifurcates into swelled
aerosol and cloud droplets.

# Suppress warnings
import warnings
warnings.simplefilter('ignore')

import pyrcel as pm
import numpy as np

%matplotlib inline
import matplotlib.pyplot as plt





Could not find GLIMDA





First, we indicate the parcel’s initial thermodynamic conditions.

P0 = 77500. # Pressure, Pa
T0 = 274.   # Temperature, K
S0 = -0.02  # Supersaturation, 1-RH (98% here)





Next, we define the aerosols present in the parcel. The model itself is
agnostic to how the aerosol are specified; it simply expects lists of
the radii of wetted aerosol radii, their number concentration, and their
hygroscopicity. We can make container objects
(:class:AerosolSpecies) that wrap all of this information so that we
never need to worry about it.

Here, let’s construct two aerosol modes:










	Mode

	\(\kappa\)
(hygroscopicity)

	Mean size
(micron)

	Std dev

	Number Conc
(cm**-3)





	sulfate

	0.54

	0.015

	1.6

	850



	sea salt

	1.2

	0.85

	1.2

	10






We’ll define each mode using the :class:Lognorm distribution
packaged with the model.

sulfate =  pm.AerosolSpecies('sulfate',
                             pm.Lognorm(mu=0.015, sigma=1.6, N=850.),
                             kappa=0.54, bins=200)
sea_salt = pm.AerosolSpecies('sea salt',
                             pm.Lognorm(mu=0.85, sigma=1.2, N=10.),
                             kappa=1.2, bins=40)





The :class:AerosolSpecies class automatically computes
gridded/binned representations of the size distributions. Let’s double
check that the aerosol distribution in the model will make sense by
plotting the number concentration in each bin.

fig = plt.figure(figsize=(10,5))
ax = fig.add_subplot(111)
ax.grid(False, "minor")

sul_c = "#CC0066"
ax.bar(sulfate.rs[:-1], sulfate.Nis*1e-6, np.diff(sulfate.rs),
        color=sul_c, label="sulfate", edgecolor="#CC0066")
sea_c = "#0099FF"
ax.bar(sea_salt.rs[:-1], sea_salt.Nis*1e-6, np.diff(sea_salt.rs),
        color=sea_c, label="sea salt", edgecolor="#0099FF")
ax.semilogx()

ax.set_xlabel("Aerosol dry radius, micron")
ax.set_ylabel("Aerosl number conc., cm$^{-3}$")
ax.legend(loc='upper right')





<matplotlib.legend.Legend at 0x10f4baeb8>





[image: ../_images/basic_run_9_1.png]
Actually running the model is very straightforward, and involves just
two steps:


	Instantiate the model by creating a :class:ParcelModel object.


	Call the model’s :method:run method.




For convenience this process is encoded into several routines in the
driver file, including both a single-strategy routine and an
iterating routine which adjusts the the timestep and numerical
tolerances if the model crashes. However, we can illustrate the simple
model running process here in case you wish to develop your own scheme
for running the model.

initial_aerosols = [sulfate, sea_salt]
V = 1.0 # updraft speed, m/s

dt = 1.0 # timestep, seconds
t_end = 250./V # end time, seconds... 250 meter simulation

model = pm.ParcelModel(initial_aerosols, V, T0, S0, P0, console=False, accom=0.3)
parcel_trace, aerosol_traces = model.run(t_end, dt, solver='cvode')





If console is set to True, then some basic debugging output will
be written to the terminal, including the initial equilibrium droplet
size distribution and some numerical solver diagnostics. The model
output can be customized; by default, we get a DataFrame and a Panel of
the parcel state vector and aerosol bin sizes as a function of time (and
height). We can use this to visualize the simulation results, like in
the package’s
README [https://github.com/darothen/parcel_model/blob/master/README.md].

fig, [axS, axA] = plt.subplots(1, 2, figsize=(10, 4), sharey=True)

axS.plot(parcel_trace['S']*100., parcel_trace['z'], color='k', lw=2)
axT = axS.twiny()
axT.plot(parcel_trace['T'], parcel_trace['z'], color='r', lw=1.5)

Smax = parcel_trace['S'].max()*100
z_at_smax = parcel_trace['z'].ix[parcel_trace['S'].argmax()]
axS.annotate("max S = %0.2f%%" % Smax,
             xy=(Smax, z_at_smax),
             xytext=(Smax-0.3, z_at_smax+50.),
             arrowprops=dict(arrowstyle="->", color='k',
                             connectionstyle='angle3,angleA=0,angleB=90'),
             zorder=10)

axS.set_xlim(0, 0.7)
axS.set_ylim(0, 250)

axT.set_xticks([270, 271, 272, 273, 274])
axT.xaxis.label.set_color('red')
axT.tick_params(axis='x', colors='red')

axS.set_xlabel("Supersaturation, %")
axT.set_xlabel("Temperature, K")
axS.set_ylabel("Height, m")

sulf_array = aerosol_traces['sulfate'].values
sea_array = aerosol_traces['sea salt'].values

ss = axA.plot(sulf_array[:, ::10]*1e6, parcel_trace['z'], color=sul_c,
         label="sulfate")
sa = axA.plot(sea_array*1e6, parcel_trace['z'], color=sea_c, label="sea salt")
axA.semilogx()
axA.set_xlim(1e-2, 10.)
axA.set_xticks([1e-2, 1e-1, 1e0, 1e1], [0.01, 0.1, 1.0, 10.0])
axA.legend([ss[0], sa[0]], ['sulfate', 'sea salt'], loc='upper right')
axA.set_xlabel("Droplet radius, micron")

for ax in [axS, axA, axT]:
    ax.grid(False, 'both', 'both')





[image: ../_images/basic_run_13_0.png]
In this simple example, the sulfate aerosol population bifurcated into
interstitial aerosol and cloud droplets, while the entire sea salt
population activated. A peak supersaturation of about 0.63% was reached
a few meters above cloud base, where the ambient relative humidity hit
100%.

How many CDNC does this translate into? We can call upon helper methods
from the activation package to perform these calculations for us:

from pyrcel import binned_activation

sulf_trace = aerosol_traces['sulfate']
sea_trace = aerosol_traces['sea salt']

ind_final = int(t_end/dt) - 1

T = parcel_trace['T'].iloc[ind_final]
eq_sulf, kn_sulf, alpha_sulf, phi_sulf = \
    binned_activation(Smax/100, T, sulf_trace.iloc[ind_final],  sulfate)
eq_sulf *= sulfate.total_N

eq_sea, kn_sea, alpha_sea, phi_sea = \
    binned_activation(Smax/100, T, sea_trace.iloc[ind_final], sea_salt)
eq_sea *= sea_salt.total_N

print("  CDNC(sulfate) = {:3.1f}".format(eq_sulf))
print(" CDNC(sea salt) = {:3.1f}".format(eq_sea))
print("------------------------")
print("          total = {:3.1f} / {:3.0f} ~ act frac = {:1.2f}".format(
      eq_sulf+eq_sea,
      sea_salt.total_N+sulfate.total_N,
      (eq_sulf+eq_sea)/(sea_salt.total_N+sulfate.total_N)
))





  CDNC(sulfate) = 146.9
 CDNC(sea salt) = 10.0
------------------------
          total = 156.9 / 860 ~ act frac = 0.18









          

      

      

    

  

    
      
          
            
  
Parcel Model Details

Below is the documentation for the parcel model, which is useful for debugging
and development. For a higher-level overview, see the scientific description.


Implementation


	
class pyrcel.ParcelModel(aerosols, V, T0, S0, P0, console=False, accom=1.0, truncate_aerosols=False)

	Wrapper class for instantiating and running the parcel model.

The parcel model has been implemented in an object-oriented format to facilitate
easy extensibility to different aerosol and meteorological conditions. A
typical use case would involve specifying the initial conditions such as:

>>> import pyrcel as pm
>>> P0 = 80000.
>>> T0 = 283.15
>>> S0 = 0.0
>>> V = 1.0
>>> aerosol1 = pm.AerosolSpecies('sulfate',
...                              Lognorm(mu=0.025, sigma=1.3, N=2000.),
...                              bins=200, kappa=0.54)
>>> initial_aerosols = [aerosol1, ]
>>> z_top = 50.
>>> dt = 0.01





which initializes the model with typical conditions at the top of the boundary
layer (800 hPa, 283.15 K, 100% Relative Humidity, 1 m/s updraft), and a simple
sulfate aerosol distribution which will be discretized into 200 size bins to
track. Furthermore the model was specified to simulate the updraft for 50
meters (z_top) and use a time-discretization of 0.01 seconds. This
timestep is used in the model output – the actual ODE solver will generally
calculate the trace of the model at many more times.

Running the model and saving the output can be accomplished by invoking:

>>> model = pm.ParcelModel(initial_aerosols, V, T0, S0, P0)
>>> par_out, aer_out = pm.run(z_top, dt)





This will yield par_out, a  pandas.DataFrame containing the meteorological
conditions in the parcel, and aerosols, a dictionary of DataFrame objects
for each species in initial_aerosols with the appropriately tracked size
bins and their evolution over time.


See also


	_setup_run

	companion routine which computes equilibrium droplet sizes and sets the model’s state vectors.







Attributes







	V, T0, S0, P0, aerosols

	(floats) Initial parcel settings (see Parameters).



	_r0s

	(array_like of floats) Initial equilibrium droplet sizes.



	_r_drys

	(array_like of floats) Dry radii of aerosol population.



	_kappas

	(array_like of floats) Hygroscopicity of each aerosol size.



	_Nis

	(array_like of floats) Number concentration of each aerosol size.



	_nr

	(int) Number of aerosol sizes tracked in model.



	_model_set

	(boolean) Flag indicating whether or not at any given time the model initialization/equilibration routine has been run with the current model settings.



	_y0

	(array_like) Initial state vector.






Methods







	run(t_end, dt, max_steps=1000, solver=”odeint”, output_fmt=”dataframes”,        terminate=False, solver_args={})

	Execute model simulation.



	set_initial_conditions(V=None, T0=None, S0=None, P0=None, aerosols=None)

	Re-initialize a model simulation in order to run it.







	
run(t_end, output_dt=1.0, solver_dt=None, max_steps=1000, solver='odeint', output_fmt='dataframes', terminate=False, terminate_depth=100.0, **solver_args)

	Run the parcel model simulation.

Once the model has been instantiated, a simulation can immediately be
performed by invoking this method. The numerical details underlying the
simulation and the times over which to integrate can be flexibly set
here.

Time – The user must specify two timesteps: output_dt, which is the
timestep between output snapshots of the state of the parcel model, and
solver_dt, which is the the interval of time before the ODE integrator
is paused and re-started. It’s usually okay to use a very large solver_dt,
as output_dt can be interpolated from the simulation. In some cases though
a small solver_dt could be useful to force the solver to use smaller
internal timesteps.

Numerical Solver – By default, the model will use the odeint wrapper
of LSODA shipped by default with scipy. Some fine-tuning of the solver tolerances
is afforded here through the max_steps. For other solvers, a set of optional
arguments solver_args can be passed.

Solution Output – Several different output formats are available by default.
Additionally, the output arrays are saved with the ParcelModel instance so they
can be used later.


	Parameters

	t_end : float


Total time over interval over which the model should be integrated




output_dt : float


Timestep intervals to report model output.




solver_dt : float


Timestep interval for calling solver integration routine.




max_steps : int


Maximum number of steps allowed by solver to satisfy error tolerances
per timestep.




solver : {‘odeint’, ‘lsoda’, ‘lsode’, ‘vode’, cvode’}


Choose which numerical solver to use:
* ‘odeint’: LSODA implementation from ODEPACK via


SciPy’s integrate module





	‘lsoda’: LSODA implementation from ODEPACK via odespy


	‘lsode’: LSODE implementation from ODEPACK via odespy


	‘vode’ : VODE implementation from ODEPACK via odespy


	‘cvode’ : CVODE implementation from Sundials via Assimulo


	‘lsodar’ : LSODAR implementation from Sundials via Assimulo







output_fmt : str, one of {‘dataframes’, ‘arrays’, ‘smax’}


Choose format of solution output.




terminate : boolean


End simulation at or shortly after a maximum supersaturation has been achieved




terminate_depth : float, optional (default=100.)


Additional depth (in meters) to integrate after termination criterion
eached.






	Returns

	DataFrames, array, or float


Depending on what was passed to the output argument, different
types of data might be returned:


	
	`dataframes’: (default) will process the output into

	two pandas DataFrames - the first one containing profiles
of the meteorological quantities tracked in the model,
and the second a dictionary of DataFrames with one for
each AerosolSpecies, tracking the growth in each bin
for those species.







	
	‘arrays’: will return the raw output from the solver

	used internally by the parcel model - the state vector
y and the evaluated timesteps converted into height
coordinates.







	
	‘smax’: will only return the maximum supersaturation

	value achieved in the simulation.














	Raises

	ParcelModelError


The parcel model failed to complete successfully or failed to initialize.









See also


	der

	right-hand side derivative evaluated during model integration.












	
set_initial_conditions(V=None, T0=None, S0=None, P0=None, aerosols=None)

	Set the initial conditions and parameters for a new parcel
model run without having to create a new ParcelModel instance.

Based on the aerosol population which has been stored in the model, this
method will finish initializing the model. This has three major parts:


	concatenate the aerosol population information (their dry radii,
hygroscopicities, etc) into single arrays which can be placed into the
state vector for forward integration.


	Given the initial ambient water vapor concentration (computed from the
temperature, pressure, and supersaturation), determine how much water
must already be coated on the aerosol particles in order for their
size to be in equilibrium.


	Set-up the state vector with these initial conditions.




Once the state vector has been set up, the setup routine will record
attributes in the parent instance of the ParcelModel.


	Parameters

	V, T0, S0, P0 : floats


The updraft speed and initial temperature (K), pressure (Pa),
supersaturation (percent, with 0.0 = 100% RH).




aerosols : array_like sequence of AerosolSpecies


The aerosols contained in the parcel.






	Raises

	ParcelModelError


If an equilibrium droplet size distribution could not be calculated.








Notes

The actual setup occurs in the private method _setup_run(); this
method is simply an interface that can be used to modify an existing
ParcelModel.












Derivative Equation


	
parcel.der(y, t, nr, r_drys, Nis, V, kappas, accom=1.0)

	Calculates the instantaneous time-derivate of the parcel model system.

Given a current state vector y of the parcel model, computes the tendency
of each term including thermodynamic (pressure, temperature, etc) and aerosol
terms. The basic aerosol properties used in the model must be passed along
with the state vector (i.e. if being used as the callback function in an ODE
solver).

This function is implemented in NumPy and Python, and is likely very slow
compared to the available Cython version.


	Parameters

	y : array_like



	Current state of the parcel model system,

	
	y[0] = altitude, m


	y[1] = Pressure, Pa


	y[2] = temperature, K


	y[3] = water vapor mass mixing ratio, kg/kg


	y[4] = cloud liquid water mass mixing ratio, kg/kg


	y[5] = cloud ice water mass mixing ratio, kg/kg


	y[6] = parcel supersaturation


	y[7:] = aerosol bin sizes (radii), m











t : float


Current simulation time, in seconds.




nr : Integer


Number of aerosol radii being tracked.




r_drys : array_like


Array recording original aerosol dry radii, m.




Nis : array_like


Array recording aerosol number concentrations, 1/(m**3).




V : float


Updraft velocity, m/s.




kappas : array_like


Array recording aerosol hygroscopicities.




accom : float, optional (default=:const:constants.ac)


Condensation coefficient.






	Returns

	x : array_like


Array of shape (``nr``+7, ) containing the evaluated parcel model
instaneous derivative.








Notes

This Python sketch of the derivative function shouldn’t really be used for
any computational purposes. Instead, see the cythonized version in the auxiliary
file, parcel_aux.pyx. In the default configuration, once the code has been
built, you can set the environmental variable OMP_NUM_THREADS to control
the parallel for loop which calculates the condensational growth rate for each
bin.











          

      

      

    

  

    
      
          
            
  
Reference


Main Parcel Model

The core of the model has its own documentation page, which you can access here.







	ParcelModel(aerosols, V, T0, S0, P0[, …])

	Wrapper class for instantiating and running the parcel model.









Driver Tools

Utilities for driving sets of parcel model integration strategies.

Occasionally, a pathological set of input parameters to the parcel model
will really muck up the ODE solver’s ability to integrate the model.
In that case, it would be nice to quietly adjust some of the numerical
parameters for the ODE solver and re-submit the job. This module includes a
workhorse function iterate_runs() which can serve this purpose and can
serve as an example for more complex integration strategies. Alternatively,
:func:`run_model`is a useful shortcut for building/running a model and snagging
its output.







	run_model(V, initial_aerosols, T, P, dt[, …])

	Setup and run the parcel model with given solver configuration.



	iterate_runs(V, initial_aerosols, T, P[, …])

	Iterate through several different strategies for integrating the parcel model.









Thermodynamics/Kohler Theory

Aerosol/atmospheric thermodynamics functions.

The following sets of functions calculate useful thermodynamic quantities
that arise in aerosol-cloud studies. Where possible, the source of the
parameterization for each function is documented.







	dv(T, r, P[, accom])

	Diffusivity of water vapor in air, modified for non-continuum effects.



	ka(T, rho, r)

	Thermal conductivity of air, modified for non-continuum effects.



	rho_air(T, P[, RH])

	Density of moist air with a given relative humidity, temperature, and pressure.



	es(T_c)

	Calculates the saturation vapor pressure over water for a given temperature.



	sigma_w(T)

	Surface tension of water for a given temperature.



	Seq(r, r_dry, T, kappa)

	κ-Kohler theory equilibrium saturation over aerosol.



	Seq_approx(r, r_dry, T, kappa)

	Approximate κ-Kohler theory equilibrium saturation over aerosol.



	kohler_crit(T, r_dry, kappa[, approx])

	Critical radius and supersaturation of an aerosol particle.



	critical_curve(T, r_a, r_b, kappa[, approx])

	Calculates curves of critical radii and supersaturations for aerosol.









Aerosols

Container class for encapsulating data about aerosol size distributions.







	AerosolSpecies(species, distribution, kappa)

	Container class for organizing aerosol metadata.






The following are utility functions which might be useful in studying
and manipulating aerosol distributions for use in the model
or activation routines.







	dist_to_conc(dist, r_min, r_max[, rule])

	Converts a swath of a size distribution function to an actual number concentration.









Distributions

Collection of classes for representing aerosol size distributions.

Most commonly, one would use the Lognorm distribution. However,
for the sake of completeness, other canonical distributions will be
included here, with the notion that this package could be extended to
describe droplet size distributions or other collections of objects.







	BaseDistribution

	Interface for distributions, to ensure that they contain a pdf method.



	Gamma

	Gamma size distribution



	Lognorm(mu, sigma[, N, base])

	Lognormal size distribution.



	MultiModeLognorm(mus, sigmas, Ns[, base])

	Multimode lognormal distribution class.






The following dictionaries containing (multi) Lognormal aerosol size distributions have also been saved for convenience:


	FN2005_single_modes: Fountoukis, C., and A. Nenes (2005), Continued development of a cloud droplet formation parameterization for global climate models, J. Geophys. Res., 110, D11212, doi:10.1029/2004JD005591


	NS2003_single_modes: Nenes, A., and J. H. Seinfeld (2003), Parameterization of cloud droplet formation in global climate models, J. Geophys. Res., 108, 4415, doi:10.1029/2002JD002911, D14.


	whitby_distributions: Whitby, K. T. (1978), The physical characteristics of sulfur aerosols, Atmos. Environ., 12(1-3), 135–159, doi:10.1016/0004-6981(78)90196-8.


	jaenicke_distributions: Jaenicke, R. (1993), Tropospheric Aerosols, in Aerosol-Cloud-Climate Interactions, P. V. Hobbs, ed., Academic Press, San Diego, CA, pp. 1-31.







Activation

Collection of activation parameterizations.







	lognormal_activation(smax, mu, sigma, N, kappa)

	Compute the activated number/fraction from a lognormal mode



	binned_activation(Smax, T, rs, aerosol[, approx])

	Compute the activation statistics of a given aerosol, its transient size distribution, and updraft characteristics.



	multi_mode_activation(Smax, T, aerosols, rss)

	Compute the activation statistics of a multi-mode, binned_activation aerosol population.



	arg2000(V, T, P[, aerosols, accom, mus, …])

	Computes droplet activation using a psuedo-analytical scheme.



	mbn2014(V, T, P[, aerosols, accom, mus, …])

	Computes droplet activation using an iterative scheme.



	shipwayabel2010(V, T, P, aerosol)

	Activation scheme following Shipway and Abel, 2010 (doi:10.1016/j.atmosres.2009.10.005).



	ming2006(V, T, P, aerosol)

	Ming activation scheme.









Constants

Commonly used constants in microphysics and aerosol thermodynamics equations as
well as important model parameters.










	Symbol

	Variable

	Value

	Units

	Description





	\(g\)

	g

	9.8

	m s**-2

	gravitational constant



	\(C_p\)

	Cp

	1004.0

	J/kg

	specific heat of dry air
at constant pressure



	\(\rho_w\)

	rho_w

	1000.0

	kg m**-3

	density of water at STP



	\(R_d\)

	Rd

	287.0

	J/kg/K

	gas constant for dry air



	\(R_v\)

	Rv

	461.5

	J/kg/K

	gas constant for water vapor



	\(R\)

	R

	8.314

	J/mol/K

	universal gas constant



	\(M_w\)

	Mw

	0.018

	kg/mol

	molecular weight of water



	\(M_a\)

	Ma

	0.0289

	kg/mol

	molecular weight of dry air



	\(D_v\)

	Dv

	3e-5

	m**2/s

	diffusivity of water vapor
in air



	\(L_v\)

	L

	2.25e6

	J/kg/K

	latent heat of vaporization
of water



	\(\alpha_c\)

	ac

	1.0

	unitless

	condensation coefficient



	\(K_a\)

	Ka

	0.02

	J/m/s/K

	thermal conductivity of air



	\(a_T\)

	at

	0.96

	unitless

	thermal accommodation
coefficient



	\(\epsilon\)

	epsilon

	0.622

	unitless

	ratio of \(M_w/M_a\)






Additionally, a reference table containing the
1976 US Standard Atmosphere [http://www.pdas.com/atmos.html] is implemented in the
constant std_atm, which is a pandas DataFrame with the fields


	alt, altitude in km


	sigma, ratio of density to sea-level density


	delta, ratio of pressure to sea-level pressure


	theta, ratio of temperature to sea-level temperature


	temp, temperature in K


	press, pressure in Pa


	dens, air density in kg/m**3


	k.visc, air kinematic viscosity


	ratio, ratio of speed of sound to kinematic viscosity in m**-1




Using default pandas functons, you can interpolate to any reference pressure or
height level.







          

      

      

    

  

    
      
          
            
  
pyrcel.ParcelModel


	
class pyrcel.ParcelModel(aerosols, V, T0, S0, P0, console=False, accom=1.0, truncate_aerosols=False)

	Wrapper class for instantiating and running the parcel model.

The parcel model has been implemented in an object-oriented format to facilitate
easy extensibility to different aerosol and meteorological conditions. A
typical use case would involve specifying the initial conditions such as:

>>> import pyrcel as pm
>>> P0 = 80000.
>>> T0 = 283.15
>>> S0 = 0.0
>>> V = 1.0
>>> aerosol1 = pm.AerosolSpecies('sulfate',
...                              Lognorm(mu=0.025, sigma=1.3, N=2000.),
...                              bins=200, kappa=0.54)
>>> initial_aerosols = [aerosol1, ]
>>> z_top = 50.
>>> dt = 0.01





which initializes the model with typical conditions at the top of the boundary
layer (800 hPa, 283.15 K, 100% Relative Humidity, 1 m/s updraft), and a simple
sulfate aerosol distribution which will be discretized into 200 size bins to
track. Furthermore the model was specified to simulate the updraft for 50
meters (z_top) and use a time-discretization of 0.01 seconds. This
timestep is used in the model output – the actual ODE solver will generally
calculate the trace of the model at many more times.

Running the model and saving the output can be accomplished by invoking:

>>> model = pm.ParcelModel(initial_aerosols, V, T0, S0, P0)
>>> par_out, aer_out = pm.run(z_top, dt)





This will yield par_out, a  pandas.DataFrame containing the meteorological
conditions in the parcel, and aerosols, a dictionary of DataFrame objects
for each species in initial_aerosols with the appropriately tracked size
bins and their evolution over time.


See also


	_setup_run

	companion routine which computes equilibrium droplet sizes and sets the model’s state vectors.







Attributes







	V, T0, S0, P0, aerosols

	(floats) Initial parcel settings (see Parameters).



	_r0s

	(array_like of floats) Initial equilibrium droplet sizes.



	_r_drys

	(array_like of floats) Dry radii of aerosol population.



	_kappas

	(array_like of floats) Hygroscopicity of each aerosol size.



	_Nis

	(array_like of floats) Number concentration of each aerosol size.



	_nr

	(int) Number of aerosol sizes tracked in model.



	_model_set

	(boolean) Flag indicating whether or not at any given time the model initialization/equilibration routine has been run with the current model settings.



	_y0

	(array_like) Initial state vector.






Methods







	run(t_end, dt, max_steps=1000, solver=”odeint”, output_fmt=”dataframes”,        terminate=False, solver_args={})

	Execute model simulation.



	set_initial_conditions(V=None, T0=None, S0=None, P0=None, aerosols=None)

	Re-initialize a model simulation in order to run it.







	
__init__(aerosols, V, T0, S0, P0, console=False, accom=1.0, truncate_aerosols=False)

	Initialize the parcel model.


	Parameters

	aerosols : array_like sequence of AerosolSpecies


The aerosols contained in the parcel.




V, T0, S0, P0 : floats


The updraft speed and initial temperature (K), pressure (Pa),
supersaturation (percent, with 0.0 = 100% RH).




console : boolean, optional


Enable some basic debugging output to print to the terminal.




accom : float, optional (default=:const:constants.ac)


Condensation coefficient




truncate_aerosols : boolean, optional (default=**False**)


Eliminate extremely small aerosol which will cause numerical problems












Methods







	__init__(aerosols, V, T0, S0, P0[, console, …])

	Initialize the parcel model.



	next()

	



	run(t_end[, output_dt, solver_dt, …])

	Run the parcel model simulation.



	save([filename, format, other_dfs])

	



	set_initial_conditions([V, T0, S0, P0, aerosols])

	Set the initial conditions and parameters for a new parcel model run without having to create a new ParcelModel instance.



	write_csv(parcel_data, aerosol_data[, …])

	Write output to CSV files.



	write_summary(parcel_data, aerosol_data, …)

	Write a quick and dirty summary of given parcel model output to the terminal.














          

      

      

    

  

    
      
          
            
  
pyrcel.driver.run_model


	
pyrcel.driver.run_model(V, initial_aerosols, T, P, dt, S0=-0.0, max_steps=1000, t_end=500.0, solver='lsoda', output_fmt='smax', terminate=False, solver_kws=None, model_kws=None)

	Setup and run the parcel model with given solver configuration.


	Parameters

	V, T, P : float


Updraft speed and parcel initial temperature and pressure.




S0 : float, optional, default 0.0


Initial supersaturation, as a percent. Defaults to 100% relative humidity.




initial_aerosols : array_like of AerosolSpecies


Set of aerosol populations contained in the parcel.




dt : float


Solver timestep, in seconds.




max_steps : int, optional, default 1000


Maximum number of steps per solver iteration. Defaults to 1000; setting
excessively high could produce extremely long computation times.




t_end : float, optional, default 500.0


Model time in seconds after which the integration will stop.




solver : string, optional, default ‘lsoda’


Alias of which solver to use; see Integrator for all options.




output_fmt : string, optional, default ‘smax’


Alias indicating which output format to use; see ParcelModel for
all options.




solver_kws, model_kws : dicts, optional


Additional arguments/configuration to pass to the numerical integrator or model.






	Returns

	Smax : (user-defined)


Output from parcel model simulation based on user-specified output_fmt argument. See
ParcelModel for details.






	Raises

	ParcelModelError


If the model fails to initialize or breaks during runtime.
















          

      

      

    

  

    
      
          
            
  
pyrcel.driver.iterate_runs


	
pyrcel.driver.iterate_runs(V, initial_aerosols, T, P, S0=-0.0, dt=0.01, dt_iters=2, t_end=500.0, max_steps=500, output_fmt='smax', fail_easy=True)

	Iterate through several different strategies for integrating the parcel model.

As long as fail_easy is set to False, the strategies this method implements are:


	CVODE with a 10 second time limit and 2000 step limit.


	LSODA with up to dt_iters iterations, where the timestep dt is
halved each time.


	LSODE with coarse tolerance and the original timestep.




If these strategies all fail, the model will print a statement indicating such
and return either -9999 if output_fmt was ‘smax’, or an empty array or DataFrame
accordingly.


	Parameters

	V, T, P : float


Updraft speed and parcel initial temperature and pressure.




S0 : float, optional, default 0.0


Initial supersaturation, as a percent. Defaults to 100% relative humidity.




initial_aerosols : array_like of AerosolSpecies


Set of aerosol populations contained in the parcel.




dt : float


Solver timestep, in seconds.




dt_iters : int, optional, default 2


Number of times to halve dt when attempting LSODA solver.




max_steps : int, optional, default 1000


Maximum number of steps per solver iteration. Defaults to 1000; setting
excessively high could produce extremely long computation times.




t_end : float, optional, default 500.0


Model time in seconds after which the integration will stop.




output : string, optional, default ‘smax’


Alias indicating which output format to use; see ParcelModel for
all options.




fail_easy : boolean, optional, default True


If True, then stop after the first strategy (CVODE)






	Returns

	Smax : (user-defined)


Output from parcel model simulation based on user-specified output argument. See
ParcelModel for details.
















          

      

      

    

  

    
      
          
            
  
pyrcel.thermo.dv


	
pyrcel.thermo.dv(T, r, P, accom=1.0)

	Diffusivity of water vapor in air, modified for non-continuum effects.

The diffusivity of water vapor in air as a function of temperature and pressure
is given by


\[\begin{equation}
D_v = 10^{-4}\frac{0.211}{P}\left(\frac{T}{273}\right)^{1.94}
      \tag{SP2006, 17.61}
\end{equation}\]

where \(P\) is in atm [SP2006]. Aerosols much smaller than the mean free path
of the  air surrounding them (\(K_n >> 1\)) perturb the flow around them
moreso than larger particles, which affects this value. We account for corrections
to \(D_v\) in the non-continuum regime via the parameterization


\[\begin{equation}
D'_v = \frac{D_v}{1+ \frac{D_v}{\alpha_c r}
        \left(\frac{2\pi M_w}{RT}\right)^{1/2}} \tag{SP2006, 17.62}
\end{equation}\]

where \(\alpha_c\) is the condensation coefficient (constants.ac).


	Parameters

	T : float


ambient temperature of air surrounding droplets, K




r : float


radius of aerosol/droplet, m




P : float


ambient pressure of surrounding air, Pa




accom : float, optional (default=:const:constants.ac)


condensation coefficient






	Returns

	float


\(D'_v(T, r, P)\) in m^2/s









See also


	dv_cont

	neglecting correction for non-continuum effects







References


	SP200689

	Seinfeld, John H, and Spyros N Pandis. Atmospheric Chemistry
and Physics: From Air Pollution to Climate Change. Vol. 2nd. Wiley, 2006.













          

      

      

    

  

    
      
          
            
  
pyrcel.thermo.ka


	
pyrcel.thermo.ka(T, rho, r)

	Thermal conductivity of air, modified for non-continuum effects.

The thermal conductivity of air is given by


\[\begin{equation}
k_a = 10^{-3}(4.39 + 0.071T) \tag{SP2006, 17.71}
\end{equation}\]

Modification to account for non-continuum effects (small aerosol/droplet
size) yields the equation


\[\begin{equation}
k'_a = \frac{k_a}{1 + \frac{k_a}{\alpha_t r_p \rho C_p}
       \frac{2\pi M_a}{RT}^{1/2}} \tag{SP2006, 17.72}
\end{equation}\]

where \(\alpha_t\) is a thermal accommodation coefficient
(constants.at).


	Parameters

	T : float


ambient air temperature, K




rho : float


ambient air density, kg/m^3




r : float


droplet radius, m






	Returns

	float


\(k'_a(T, \rho, r)\) in J/m/s/K









See also


	ka_cont

	neglecting correction for non-continuum effects







References


	SP20061415

	Seinfeld, John H, and Spyros N Pandis. Atmospheric Chemistry
and Physics: From Air Pollution to Climate Change. Vol. 2nd. Wiley, 2006.













          

      

      

    

  

    
      
          
            
  
pyrcel.thermo.rho_air


	
pyrcel.thermo.rho_air(T, P, RH=1.0)

	Density of moist air with a given relative humidity, temperature, and pressure.

Uses the traditional formula from the ideal gas law (3.41)[Petty2006].


\[\begin{equation}
\rho_a = \frac{P}{R_d T_v}
\end{equation}\]

where \(T_v = T(1 + 0.61w)\) and \(w\) is the water vapor mixing ratio.


	Parameters

	T : float


ambient air temperature, K




P : float


ambient air pressure, Pa




RH : float, optional (default=1.0)


relative humidity, decimal






	Returns

	float


\(\rho_{a}\) in kg m**-3








References


	Petty20061617

	Petty, Grant Williams. A First Course in Atmospheric Radiation.
Sundog Publishing, 2006. Print.













          

      

      

    

  

    
      
          
            
  
pyrcel.thermo.es


	
pyrcel.thermo.es(T_c)

	Calculates the saturation vapor pressure over water for a given temperature.

Uses an empirical fit [Bolton1980], which is accurate to \(0.1\%\) over the
temperature range \(-30^oC \leq T \leq 35^oC\),


\[\begin{equation}
e_s(T) = 611.2 \exp\left(\frac{17.67T}{T + 243.5}\right) \tag{RY1989, 2.17}
\end{equation}\]

where \(e_s\) is in Pa and \(T\) is in degrees C.


	Parameters

	T_c : float


ambient air temperature, degrees C






	Returns

	float


\(e_s(T)\) in Pa








References


	Bolton19801012

	Bolton, David. “The Computation of Equivalent Potential
Temperature”. Monthly Weather Review 108.8 (1980): 1046-1053



	RY19891012

	Rogers, R. R., and M. K. Yau. A Short Course in Cloud Physics.
Burlington, MA: Butterworth Heinemann, 1989.













          

      

      

    

  

    
      
          
            
  
pyrcel.thermo.sigma_w


	
pyrcel.thermo.sigma_w(T)

	Surface tension of water for a given temperature.


\[\begin{equation}
\sigma_w = 0.0761 - 1.55\times 10^{-4}(T - 273.15)
\end{equation}\]


	Parameters

	T : float


ambient air temperature, degrees K






	Returns

	float


\(\sigma_w(T)\) in J/m^2
















          

      

      

    

  

    
      
          
            
  
pyrcel.thermo.Seq


	
pyrcel.thermo.Seq(r, r_dry, T, kappa)

	κ-Kohler theory equilibrium saturation over aerosol.

Calculates the equilibrium supersaturation (relative to 100% RH) over an
aerosol particle of given dry/wet radius and of specified hygroscopicity
bathed in gas at a particular temperature

Following the technique of [PK2007], classical
Kohler theory can be modified to account for the hygroscopicity of an aerosol
particle using a single parameter, \(\kappa\). The modified theory predicts
that the supersaturation with respect to a given aerosol particle is,


\[\begin{split}S_\text{eq} &= a_w \exp \left( \frac{2\sigma_{w} M_w}{RT\rho_w r} \right)\\
a_w &= \left(1 + \kappa\left(\frac{r_d}{r}^3\right) \right)^{-1}\end{split}\]

with the relevant thermodynamic properties of water defined elsewhere in this
module, \(r_d\) is the particle dry radius (r_dry), \(r\) is the
radius of the droplet containing the particle (r), \(T\) is the temperature
of the environment (T), and \(\kappa\) is the hygroscopicity parameter
of the particle (kappa).


	Parameters

	r : float


droplet radius, m




r_dry : float


dry particle radius, m




T : float


ambient air temperature, K




kappa: float


particle hygroscopicity parameter






	Returns

	float


\(S_\text{eq}\) for the given aerosol/droplet system









See also


	Seq_approx

	compute equilibrium supersaturation using an approximation



	kohler_crit

	compute critical radius and equilibrium supersaturation







References


	PK200767

	Petters, M. D., and S. M. Kreidenweis. “A Single Parameter
Representation of Hygroscopic Growth and Cloud Condensation Nucleus
Activity.” Atmospheric Chemistry and Physics 7.8 (2007): 1961-1971













          

      

      

    

  

    
      
          
            
  
pyrcel.thermo.Seq_approx


	
pyrcel.thermo.Seq_approx(r, r_dry, T, kappa)

	Approximate κ-Kohler theory equilibrium saturation over aerosol.

Calculates the equilibrium supersaturation (relative to 100% RH) over an
aerosol particle of given dry/wet radius and of specified hygroscopicity
bathed in gas at a particular temperature, using a simplified expression
derived by Taylor-expanding the original equation,


\[S_\text{eq} = \frac{2\sigma_{w} M_w}{RT\rho_w r} - \kappa\frac{r_d^3}{r^3}\]

which is valid when the equilibrium supersaturation is small, i.e. in
most terrestrial atmosphere applications.


	Parameters

	r : float


droplet radius, m




r_dry : float


dry particle radius, m




T : float


ambient air temperature, K




kappa: float


particle hygroscopicity parameter






	Returns

	float


\(S_\text{eq}\) for the given aerosol/droplet system









See also


	Seq

	compute equilibrium supersaturation using full theory



	kohler_crit

	compute critical radius and equilibrium supersaturation















          

      

      

    

  

    
      
          
            
  
pyrcel.thermo.kohler_crit


	
pyrcel.thermo.kohler_crit(T, r_dry, kappa, approx=False)

	Critical radius and supersaturation of an aerosol particle.

The critical size of an aerosol particle corresponds to the maximum equilibrium
supersaturation achieved on its Kohler curve. If a particle grows beyond this
size, then it is said to “activate”, and will continue to freely grow even
if the environmental supersaturation decreases.

This function computes the critical size and and corresponding supersaturation
for a given aerosol particle. Typically, it will analyze Seq() for the
given particle and numerically compute its inflection point. However, if the
approx flag is passed, then it will compute the analytical critical point
for the approximated kappa-Kohler equation.


	Parameters

	T : float


ambient air temperature, K




r_dry : float


dry particle radius, m




kappa : float


particle hygroscopicity parameter




approx : boolean, optional (default=False)


use the approximate kappa-kohler equation






	Returns

	(r_crit, s_crit) : tuple of floats


Tuple of \((r_\text{crit},\, S_\text{crit})\), the critical radius (m)
and supersaturation of the aerosol droplet.









See also


	Seq

	equilibrium supersaturation calculation















          

      

      

    

  

    
      
          
            
  
pyrcel.thermo.critical_curve


	
pyrcel.thermo.critical_curve(T, r_a, r_b, kappa, approx=False)

	Calculates curves of critical radii and supersaturations for aerosol.

Calls kohler_crit() for values of r_dry between r_a and r_b
to calculate how the critical supersaturation changes with the dry radius for a
particle of specified kappa


	Parameters

	T : float


ambient air temperature, K




r_a, r_b : floats


left/right bounds of parcel dry radii, m




kappa : float


particle hygroscopicity parameter






	Returns

	rs, rcrits, scrits : np.ndarrays


arrays containing particle dry radii (between r_a and r_b)
and their corresponding criticall wet radii and supersaturations









See also


	kohler_crit

	critical supersaturation calculation















          

      

      

    

  

    
      
          
            
  
pyrcel.aerosol.AerosolSpecies


	
class pyrcel.aerosol.AerosolSpecies(species, distribution, kappa, rho=None, mw=None, bins=None, r_min=None, r_max=None)

	Container class for organizing aerosol metadata.

To allow flexibility with how aerosols are defined in the model, this class is
meant to act as a wrapper to contain metadata about aerosols (their species
name, etc), their chemical composition (particle mass, hygroscopicity, etc),
and the particular size distribution chosen for the initial dry aerosol.
Because the latter could be very diverse - for instance, it might be desired
to have a monodisperse aerosol population, or a bin representation of a
canonical size distribution - the core of this class is designed to take
those representations and homogenize them for use in the model.

To construct an AerosolSpecies, only the metadata (species and
kappa)  and the size distribution needs to be specified. The size distribution
(distribution) can be an instance of Lognorm, as
long as an extra parameter bins, which is an integer representing how many
bins into which the distribution should be divided, is also passed to the
constructor. In this  case, the constructor will figure out how to slice the
size distribution to calculate all the aerosol dry radii and their number
concentrations. If r_min and r_max are supplied, then the size range of
the aerosols will be bracketed; else, the supplied distribution will contain
a shape parameter or other bounds to use.

Alternatively, a dict can be passed as distribution where that
slicing has already occurred. In this case, distribution must have 2 keys:
r_drys and Nis. Each of the values stored to those keys should fit the
attribute descriptors above (although they don’t need to be  arrays - they can
be any iterable.)


	Parameters

	species : string


Name of aerosol species.




distribution : { LogNorm, MultiLogNorm, dict }


Representation of aerosol size distribution.




kappa : float


Hygroscopicity of species.




rho : float, optional


Density of dry aerosol material, kg m**-3.




mw : float, optional


Molecular weight of dry aerosol material, kg/mol.




bins : int


Number of bins in discretized size distribution.








Examples

Constructing sulfate aerosol with a specified lognormal distribution -

>>> aerosol1 = AerosolSpecies('(NH4)2SO4', Lognorm(mu=0.05, sigma=2.0, N=300.),
...                           bins=200, kappa=0.6)





Constructing a monodisperse sodium chloride distribution -

>>> aerosol2 = AerosolSpecies('NaCl', {'r_drys': [0.25, ], 'Nis': [1000.0, ]},
...                          kappa=0.2)






Warning

Throws a ValueError if an unknown type of distribution is passed
to the constructor, or if bins isn’t present when distribution is
an instance of Lognorm.



Attributes







	nr

	(float) Number of sizes tracked for this aerosol.



	r_drys

	(array of floats of length nr) Dry radii of each representative size tracked for this aerosol, m.



	rs

	(array of floats of length nr + 1) Edges of bins in discretized aerosol distribution representation, m.



	Nis

	(array of floats of length nr) Number concentration of aerosol of each representative size, m**-3.



	total_N

	(float) Total number concentration of aerosol in this species, cm**-3.







	
__init__(species, distribution, kappa, rho=None, mw=None, bins=None, r_min=None, r_max=None)

	




	
stats()

	Compute useful statistics about this aerosol’s size distribution.


	Returns

	dict


Inherits the values from the distribution, and if rho
was provided, adds some statistics about the mass and
mass-weighted properties.






	Raises

	ValueError


If the stored distribution does not implement a stats()
function.




















          

      

      

    

  

    
      
          
            
  
pyrcel.aerosol.dist_to_conc


	
pyrcel.aerosol.dist_to_conc(dist, r_min, r_max, rule='trapezoid')

	Converts a swath of a size distribution function to an actual number
concentration.

Aerosol size distributions are typically reported by normalizing the
number density by the size of the aerosol. However, it’s sometimes more
convenient to simply have a histogram of representing several aerosol
size ranges (bins) and the actual number concentration one should expect
in those bins. To accomplish this, one only needs to integrate the size
distribution function over the range spanned by the bin.


	Parameters

	dist : object implementing a pdf() method


the representation of the size distribution




r_min, r_max : float


the lower and upper bounds of the size bin, in the native units of dist




rule : {‘trapezoid’, ‘simpson’, ‘other’} (default=’trapezoid’)


rule used to integrate the size distribution






	Returns

	float


The number concentration of aerosol particles the given bin.








Examples

>>> dist = Lognorm(mu=0.015, sigma=1.6, N=850.0)
>>> r_min, r_max = 0.00326456461236 0.00335634401598
>>> dist_to_conc(dist, r_min, r_max)
0.114256210943













          

      

      

    

  

    
      
          
            
  
pyrcel.distributions.BaseDistribution


	
class pyrcel.distributions.BaseDistribution

	Interface for distributions, to ensure that they contain a pdf method.


	
__init__()

	x.__init__(…) initializes x; see help(type(x)) for signature






	
cdf(x)

	Cumulative density function






	
pdf(x)

	Probability density function.













          

      

      

    

  

    
      
          
            
  
pyrcel.distributions.Gamma


	
class pyrcel.distributions.Gamma

	Gamma size distribution


	
__init__()

	x.__init__(…) initializes x; see help(type(x)) for signature













          

      

      

    

  

    
      
          
            
  
pyrcel.distributions.Lognorm


	
class pyrcel.distributions.Lognorm(mu, sigma, N=1.0, base=2.718281828459045)

	Lognormal size distribution.

An instance of Lognorm contains a construction of a lognormal distribution
and the utilities necessary for computing statistical functions associated
with that distribution. The parameters of the constructor are invariant with respect
to what length and concentration unit you choose; that is, if you use meters for
mu and cm**-3 for N, then you should keep these in mind when evaluating
the pdf() and cdf() functions and when interpreting moments.


	Parameters

	mu : float


Median/geometric mean radius, length unit.




sigma : float


Geometric standard deviation, unitless.




N : float, optional (default=1.0)


Total number concentration, concentration unit.




base : float, optional (default=np.e)


Base of logarithm in lognormal distribution.








Attributes







	median, mean

	(float) Pre-computed statistical quantities






Methods







	pdf(x)

	Evaluate distribution at a particular value



	cdf(x)

	Evaluate cumulative distribution at a particular value.



	moment(k)

	Compute the k-th moment of the lognormal distribution.







	
__init__(mu, sigma, N=1.0, base=2.718281828459045)

	




	
cdf(x)

	Cumulative density function


\[\text{CDF} = \frac{N}{2}\left(1.0 + \text{erf}(\frac{\log{x/\mu}}{\sqrt{2}\log{\sigma}}) \right)\]


	Parameters

	x : float


Ordinate value to evaluate CDF at






	Returns

	value of CDF at ordinate










	
invcdf(y)

	Inverse of cumulative density function.


	Parameters

	y : float


CDF value, between (0, 1)






	Returns

	value of ordinate corresponding to given CDF evaluation










	
moment(k)

	Compute the k-th moment of the lognormal distribution


\[F(k) = N\mu^k\exp\left( \frac{k^2}{2} \ln^2 \sigma \right)\]


	Parameters

	k : int


Moment to evaluate






	Returns

	moment of distribution










	
pdf(x)

	Probability density function


\[\text{PDF} = \frac{N}{\sqrt{2\pi}\log\sigma x}\exp\left( -\frac{\log{x/\mu}^2}{2\log^2\sigma} \right)\]


	Parameters

	x : float


Ordinate value to evaluate CDF at






	Returns

	value of CDF at ordinate










	
stats

	Compute useful statistics for a lognormal distribution


	Returns

	dict


Dictionary containing the stats mean_radius, total_diameter,
total_surface_area, total_volume, mean_surface_area,
mean_volume, and effective_radius




















          

      

      

    

  

    
      
          
            
  
pyrcel.distributions.MultiModeLognorm


	
class pyrcel.distributions.MultiModeLognorm(mus, sigmas, Ns, base=2.718281828459045)

	Multimode lognormal distribution class.

Container for multiple Lognorm classes representing a full aerosol size
distribution.


	
__init__(mus, sigmas, Ns, base=2.718281828459045)

	




	
cdf(x)

	




	
pdf(x)

	











          

      

      

    

  

    
      
          
            
  
pyrcel.activation.lognormal_activation


	
pyrcel.activation.lognormal_activation(smax, mu, sigma, N, kappa, sgi=None, T=None, approx=True)

	Compute the activated number/fraction from a lognormal mode


	Parameters

	smax : float


Maximum parcel supersaturation




mu, sigma, N : floats


Lognormal mode parameters; mu should be in meters




kappa : float


Hygroscopicity of material in aerosol mode




sgi :float, optional


Modal critical supersaturation; if not provided, this method will
go ahead and compute them, but a temperature T must also be passed




T : float, optional


Parcel temperature; only necessary if no sgi was passed




approx : boolean, optional (default=False)


If computing modal critical supersaturations, use the approximated
Kohler theory






	Returns

	N_act, act_frac : floats


Activated number concentration and fraction for the given mode
















          

      

      

    

  

    
      
          
            
  
pyrcel.activation.binned_activation


	
pyrcel.activation.binned_activation(Smax, T, rs, aerosol, approx=False)

	Compute the activation statistics of a given aerosol, its transient
size distribution, and updraft characteristics. Following Nenes et al, 2001
also compute the kinetic limitation statistics for the aerosol.


	Parameters

	Smax : float


Environmental maximum supersaturation.




T : float


Environmental temperature.




rs : array of floats


Wet radii of aerosol/droplet population.




aerosol : AerosolSpecies


The characterization of the dry aerosol.




approx : boolean


Approximate Kohler theory rather than include detailed calculation (default False)






	Returns

	eq, kn: floats


Activated fractions




alpha : float


N_kn / N_eq




phi : float


N_unact / N_kn
















          

      

      

    

  

    
      
          
            
  
pyrcel.activation.multi_mode_activation


	
pyrcel.activation.multi_mode_activation(Smax, T, aerosols, rss)

	Compute the activation statistics of a multi-mode, binned_activation
aerosol population.


	Parameters

	Smax : float


Environmental maximum supersaturation.




T : float


Environmental temperature.




aerosol : array of AerosolSpecies


The characterizations of the dry aerosols.




rss : array of arrays of floats


Wet radii corresponding to each aerosol/droplet population.






	Returns

	eqs, kns : lists of floats


The activated fractions of each aerosol population.
















          

      

      

    

  

    
      
          
            
  
pyrcel.activation.arg2000


	
pyrcel.activation.arg2000(V, T, P, aerosols=[], accom=1.0, mus=[], sigmas=[], Ns=[], kappas=[], min_smax=False)

	Computes droplet activation using a psuedo-analytical scheme.


This method implements the psuedo-analytical scheme of [ARG2000] to
calculate droplet activation an an adiabatically ascending parcel. It
includes the extension to multiple lognormal modes, and the correction
for non-unity condensation coefficient [GHAN2011].

To deal with multiple aerosol modes, the scheme includes an expression
trained on the mode std deviations, \(\sigma_i\)


\[S_\text{max} = 1 \bigg/ \sqrt{\sum \frac{1}{S^2_        ext{mi}}\left[H(f_i, g_i)\]




ight]}


This effectively combines the supersaturation maximum for each mode into
a single value representing competition between modes. An alternative approach,
which assumes the mode which produces the smallest predict Smax sets a
first-order control on the activation, is also available





	Parameters

	V, T, P : floats



Updraft speed (m/s), parcel temperature (K) and pressure (Pa)





	aerosolslist of AerosolSpecies

	List of the aerosol population in the parcel; can be omitted if mus,
sigmas, Ns, and kappas are present. If both supplied, will
use aerosols.



	accomfloat, optional (default=:const:constants.ac)

	Condensation/uptake accomodation coefficient



	mus, sigmas, Ns, kappaslists of floats

	Lists of aerosol population parameters; must be present if aerosols
is not passed, but aerosols overrides if both are present.



	min_smaxboolean, optional

	If True, will use alternative formulation for parameterizing competition
described above.










	Returns

	smax, N_acts, act_fracs : lists of floats



Maximum parcel supersaturation and the number concentration/activated
fractions for each mode





	ARG200002

	Abdul-Razzak, H., and S. J. Ghan (2000), A parameterization of
aerosol activation: 2. Multiple aerosol types, J. Geophys. Res., 105(D5),
6837-6844, doi:10.1029/1999JD901161.



	GHAN201102

	Ghan, S. J. et al (2011) Droplet Nucleation: Physically-based
Parameterization and Comparative Evaluation, J. Adv. Model. Earth Syst.,
3, doi:10.1029/2011MS000074




















          

      

      

    

  

    
      
          
            
  
pyrcel.activation.mbn2014


	
pyrcel.activation.mbn2014(V, T, P, aerosols=[], accom=1.0, mus=[], sigmas=[], Ns=[], kappas=[], xmin=1e-05, xmax=0.1, tol=1e-06, max_iters=100)

	Computes droplet activation using an iterative scheme.

This method implements the iterative activation scheme under development by
the Nenes’ group at Georgia Tech. It encompasses modifications made over a
sequence of several papers in the literature, culminating in [MBN2014]. The
implementation here overrides some of the default physical constants and
thermodynamic calculations to ensure consistency with a reference implementation.


	Parameters

	V, T, P : floats


Updraft speed (m/s), parcel temperature (K) and pressure (Pa)




aerosols : list of AerosolSpecies


List of the aerosol population in the parcel; can be omitted if mus,
sigmas, Ns, and kappas are present. If both supplied, will
use aerosols.




accom : float, optional (default=:const:constants.ac)


Condensation/uptake accomodation coefficient




mus, sigmas, Ns, kappas : lists of floats


Lists of aerosol population parameters; must be present if aerosols
is not passed, but aerosols overrides if both are present




xmin, xmax : floats, opional


Minimum and maximum supersaturation for bisection




tol : float, optional


Convergence tolerance threshold for supersaturation, in decimal units




max_iters : int, optional


Maximum number of bisections before exiting convergence






	Returns

	smax, N_acts, act_fracs : lists of floats


Maximum parcel supersaturation and the number concentration/activated
fractions for each mode





	MBN201445

	Morales Betancourt, R. and Nenes, A.: Droplet activation

parameterization: the population splitting concept revisited, Geosci.
Model Dev. Discuss., 7, 2903-2932, doi:10.5194/gmdd-7-2903-2014, 2014.

















          

      

      

    

  

    
      
          
            
  
pyrcel.activation.shipwayabel2010


	
pyrcel.activation.shipwayabel2010(V, T, P, aerosol)

	Activation scheme following Shipway and Abel, 2010
(doi:10.1016/j.atmosres.2009.10.005).









          

      

      

    

  

    
      
          
            
  
pyrcel.activation.ming2006


	
pyrcel.activation.ming2006(V, T, P, aerosol)

	Ming activation scheme.

NOTE - right now, the variable names correspond to the FORTRAN implementation of the routine. Will change in the future.









          

      

      

    

  

    
      
          
            

   Python Module Index


   
   p
   


   
     		 	

     		
       p	

     
       	[image: -]
       	
       pyrcel	
       

     
       	
       	   
       pyrcel.activation	
       

     
       	
       	   
       pyrcel.aerosol	
       

     
       	
       	   
       pyrcel.constants	
       

     
       	
       	   
       pyrcel.distributions	
       

     
       	
       	   
       pyrcel.driver	
       

     
       	
       	   
       pyrcel.thermo	
       

   



          

      

      

    

  

    
      
          
            

Index



 _
 | A
 | B
 | C
 | D
 | E
 | G
 | I
 | K
 | L
 | M
 | P
 | R
 | S
 


_


  	
      	__init__() (pyrcel.aerosol.AerosolSpecies method)

      
        	(pyrcel.ParcelModel method)


        	(pyrcel.distributions.BaseDistribution method)


        	(pyrcel.distributions.Gamma method)


        	(pyrcel.distributions.Lognorm method)


        	(pyrcel.distributions.MultiModeLognorm method)


      


  





A


  	
      	AerosolSpecies (class in pyrcel.aerosol)


  

  	
      	arg2000() (in module pyrcel.activation)


  





B


  	
      	BaseDistribution (class in pyrcel.distributions)


  

  	
      	binned_activation() (in module pyrcel.activation)


  





C


  	
      	cdf() (pyrcel.distributions.BaseDistribution method)

      
        	(pyrcel.distributions.Lognorm method)


        	(pyrcel.distributions.MultiModeLognorm method)


      


  

  	
      	critical_curve() (in module pyrcel.thermo)


  





D


  	
      	der() (pyrcel.parcel method)


  

  	
      	dist_to_conc() (in module pyrcel.aerosol)


      	dv() (in module pyrcel.thermo)


  





E


  	
      	es() (in module pyrcel.thermo)


  





G


  	
      	Gamma (class in pyrcel.distributions)


  





I


  	
      	invcdf() (pyrcel.distributions.Lognorm method)


  

  	
      	iterate_runs() (in module pyrcel.driver)


  





K


  	
      	ka() (in module pyrcel.thermo)


  

  	
      	kohler_crit() (in module pyrcel.thermo)


  





L


  	
      	Lognorm (class in pyrcel.distributions)


  

  	
      	lognormal_activation() (in module pyrcel.activation)


  





M


  	
      	mbn2014() (in module pyrcel.activation)


      	ming2006() (in module pyrcel.activation)


  

  	
      	moment() (pyrcel.distributions.Lognorm method)


      	multi_mode_activation() (in module pyrcel.activation)


      	MultiModeLognorm (class in pyrcel.distributions)


  





P


  	
      	ParcelModel (class in pyrcel), [1]


      	pdf() (pyrcel.distributions.BaseDistribution method)

      
        	(pyrcel.distributions.Lognorm method)


        	(pyrcel.distributions.MultiModeLognorm method)


      


      	pyrcel.activation (module)


  

  	
      	pyrcel.aerosol (module)


      	pyrcel.constants (module)


      	pyrcel.distributions (module)


      	pyrcel.driver (module)


      	pyrcel.thermo (module)


  





R


  	
      	rho_air() (in module pyrcel.thermo)


  

  	
      	run() (pyrcel.ParcelModel method)


      	run_model() (in module pyrcel.driver)


  





S


  	
      	Seq() (in module pyrcel.thermo)


      	Seq_approx() (in module pyrcel.thermo)


      	set_initial_conditions() (pyrcel.ParcelModel method)


  

  	
      	shipwayabel2010() (in module pyrcel.activation)


      	sigma_w() (in module pyrcel.thermo)


      	stats (pyrcel.distributions.Lognorm attribute)


      	stats() (pyrcel.aerosol.AerosolSpecies method)


  







          

      

      

    

  _images/basic_run_9_1.png
eros! number conc., cm

20

- ulfate
= sea salt

3

5

10° 10° 10°
erosol dry radius, micron






_images/model_example.png
Height (m)

Temperature (K)

10?632.0 28?.2 28|244 28‘246 28?.8 283.0

20 1

8.00 0.05 0.10 0.15 0.20 0.25 030 0.35 0.40
Supersaturation (%)

0.01

Droplet radius, yum





_images/activate_13_0.png
Superaturation Max, %

20

0

— Parcal Mods!
® wenoi
® w00

Actvated Fraction

10

e

05

04

02

— Parcal Mods!
® wenoi
® w00

a

02

o5 w20

Updraft speed, mis.

50

00

0

a

02

s w20

Updraft speed, mis.

50

00





_images/basic_run_13_0.png





_static/down-pressed.png





_static/down.png





_static/comment-close.png





_static/comment.png





_static/minus.png





_static/plus.png





_static/file.png





_static/up-pressed.png





_static/ajax-loader.gif





_static/comment-bright.png





_static/up.png





nav.xhtml

    
      Table of Contents


      
        		
          pyrcel: cloud parcel model
        


        		
          Scientific Description
          
            		
              Model Formulation
            


            		
              Model Implementation and Procedure
            


            		
              Aerosol Population Specification
            


            		
              References
            


          


        


        		
          Installation
          
            		
              Dependencies
              
                		
                  Necessary dependencies
                


                		
                  Numerical solver dependencies
                


                		
                  Recommended additional packages
                


              


            


            		
              Testing
            


            		
              Bugs / Suggestions
            


          


        


        		
          Example: Activation
        


        		
          Example: Basic Run
        


        		
          Parcel Model Details
          
            		
              Implementation
            


            		
              Derivative Equation
            


          


        


        		
          Reference
          
            		
              Main Parcel Model
              
                		
                  pyrcel.ParcelModel
                


              


            


            		
              Driver Tools
              
                		
                  pyrcel.driver.run_model
                


                		
                  pyrcel.driver.iterate_runs
                


              


            


            		
              Thermodynamics/Kohler Theory
              
                		
                  pyrcel.thermo.dv
                


                		
                  pyrcel.thermo.ka
                


                		
                  pyrcel.thermo.rho_air
                


                		
                  pyrcel.thermo.es
                


                		
                  pyrcel.thermo.sigma_w
                


                		
                  pyrcel.thermo.Seq
                


                		
                  pyrcel.thermo.Seq_approx
                


                		
                  pyrcel.thermo.kohler_crit
                


                		
                  pyrcel.thermo.critical_curve
                


              


            


            		
              Aerosols
              
                		
                  pyrcel.aerosol.AerosolSpecies
                


                		
                  pyrcel.aerosol.dist_to_conc
                


              


            


            		
              Distributions
              
                		
                  pyrcel.distributions.BaseDistribution
                


                		
                  pyrcel.distributions.Gamma
                


                		
                  pyrcel.distributions.Lognorm
                


                		
                  pyrcel.distributions.MultiModeLognorm
                


              


            


            		
              Activation
              
                		
                  pyrcel.activation.lognormal_activation
                


                		
                  pyrcel.activation.binned_activation
                


                		
                  pyrcel.activation.multi_mode_activation
                


                		
                  pyrcel.activation.arg2000
                


                		
                  pyrcel.activation.mbn2014
                


                		
                  pyrcel.activation.shipwayabel2010
                


                		
                  pyrcel.activation.ming2006
                


              


            


            		
              Constants
            


          


        


      


    
  

